Training agenda

Predictive modeling with R

Instructor: Artur Suchwałko, Ph.D.

1. Introduction
 - applications of predictive models
 - data preparation
 - stages of learning and testing of effectiveness of models
 - selection of parameters of models

2. Data preparation
 - analysis of single features (characteristics)
 - distributions (contingency tables, histograms)
 - missing data and outliers
 - quality control and data cleaning
 - preliminary selection of features – analysis of discriminative power of features
 - classing (discretization) of continuous features
 - role of discretization
 - methods of of discretization
 - weight of evidence (WoE)
 - entropy maximization
 - classification trees
 - analysis of dependency between features and construction of derivative features (generated characteristics, cross characteristics)
 - standardization
 - sampling

3. Classification and regression methods
 - discriminative analysis
 - k-nearest neighbors method
 - neural networks
 - Support Vector Machines (SVM)
 - classification trees
 - regression trees
 - randomForest
• Bayes classifier
• linear regression
• logistic regression
• nonlinear regression

4. Tree-based models
 • specificity of tree-based models
 • overview of applications
 • visualization and interpretation of results
 • practical aspects related to tree-based models building:
 – feature selection criteria
 – split criteria
 – stop criteria
 – assessment of tree structure complexity
 • classification trees
 • regression trees
 • postprocessing of trees: simplifying and modification of structure (pruning), expert analysis
 • pros and cons of tree-based models
 • improvement of stability and effectiveness of trees (bagging algorithm, hybrid models)
 • randomForest

5. Classification quality assessment and tuning of classifiers parameters
 • classification error estimation
 • quality assessment strategies: train/test, cross-validation, leave-one-out, bootstrap
 • ROC curve, AUROC coefficient
 • cost-sensitive learning, cost-sensitive evaluation
 • selection of optimal cut-off point
 • selection of optimal model parameters (tuning)
 • comparison and selection of the best model

6. Feature selection for model building
 • criteria of application of features in models (statistical, business, operational)
 • graphical methods
 • complete search
 • one-step methods (filters)
 • stepwise methods (forward, backward, forward-backward)
 • methods built-in in classifiers (e.g. randomForest), committees of models, other methods

7. Very important practical aspects of modeling
 • building models for small data sets
 • building models for numerical features without categorization
 • dependency of features (numerical and categorical) – how to manage this issue
 • not equal proportions of groups and its consequences
 • comparison of popular approaches to model building: dummy variables, WoE encoding, models for continuous features

8. Additional practical topics related to predictive model building in R
 • working with different input data formats
 • working using MS Excel
 • export of models in PMML format